کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

تیر 1403
شن یک دو سه چهار پنج جم
 << <   > >>
            1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31          


جستجو



آخرین مطالب

 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

Purchase guide distance from tehran to armenia

 



2-1-1-1 پاسخ خطی طیف اپتیكی…………………………………….. 51

2-1-2 طیف الکترونی در KS-DFT…………………………………….

2-2 شبه- ذرات و روش توابع گرین…………………………………….. 56

2-2-1 نمایش شبه- ذرات و تابع طیفی…………………………………….. 59

2-2-2 پنج ضلعی هدین…………………………………….. 60

2-2-3 تقریب GW………………………………………

2-3 روش بته- سالپیتر: معادله ی دو- ذره ای مؤثر……………………….. 66

2-3 -1 اجزاء و تقریب های BSE……………………………………..

فصل سوم: مطالعه ساختار الكترونی نانو صفحه تك لایه و دو لایه شش­ضلعی بورن- نیترید

3-1 خواص ساختاری و الكترونی دو لایه شش ضلعی بورن- نیترید………… 78

3-2 مدل بستگی قوی برای تك لایه و دو لایه بورن- نیترید…………………. 81

3-2-1 شبكه لانه زنبوری h-BN……………………………………..

3-2-2 روش كلی…………………………………….. 83

3-2-2-1 ماتریس انتقال H……………………………………..

3-2-2-2 ماتریس همپوشانی S…………………………………….

3-3 نظریه تابعی چگالی…………………………………….. 87

3-4 نتایج انطباق طیف انرژی بین DFT و TB برای تك لایه و دو لایه بورن- نیترید……..88

فصل چهارم: مطالعه خواص الكترونی و اپتیكی دو لایه شش­ضلعی بورن- نیترید، نتایج

4-1 مقدمه……………………………………. 99

4-2 روش محاسبات……………………………………… 99

4-3 بررسی خواص الكترونی و اپتیكی……………….. 102

4-4 جمع بندی…………………………………….. 113

پیوست

فعالیتهای پژوهشی…………………………………….. 116

چکیده:

مقالات و پایان نامه ارشد

امروزه بطور گسترده ای نانو صفحات چند لایه شش­ضلعی بورن- نیترید، بعلت خواص الكترونی و اپتیكی بسیار جذاب آن­ها، بطور تجربی و نظری مورد مطالعه قرار گرفته­اند. هدف اصلی این پروژه بررسی خواص الکترونی و اپتیکی نانو ساختارهایی همچون، نانو صفحات بورن- نیترید، با استفاده از نظریه­های GW و BSE در محدوده پاسخ خطی می­باشد. در مبحث خواص الکترونی ما به محاسبه انرژی و ساختار نواری و طیف چگالی حالت شبه- ذرات خواهیم پرداخت. همچنین، از یك مدل بستگی قوی برای ساختار نواری تك- لایه و دو- لایه بورن- نیترید استفاده می­كنیم و شاخص­های جهش و انرژی­های جایگاهی را با استفاده از انطباق طرح بستگی قوی و داده­های نظریه تابعی چگالی بدست خواهیم آورد. در مبحثخواص اپتیکی، قسمت­ های حقیقی و موهومی (جذب اپتیکی) تابع دی­الکتریک، در اثر قرار دادن نانو صفحه در دو راستای میدان موازی (قطبش موازی) و میدان عمودی (قطبش عمودی)، و همچنین انرژی و اثرات اکسیتونی و تابع توزیع احتمال الکترون در اثر قرار دادن مکان حفره در جایگاه ثابت، را بدست خواهیم آورد.

بنابراین، با توجه به این­که محاسباتی در زمینه­ تاثیر آثار بس- ذره­ای برای نانو صفحات چند لایه شش­ضلعی بورن- نیترید انجام نشده است، این نتایج برای مطالعات تجربی و نظری آینده روی این­چنین ساختارها می­تواند مفید باشد.

پیشگفتار:

در سال­های اخیر، پژوهش­های گسترده­ای در زمینه­ سامانه­هاینانو ساختارانجام شده است، بخصوص با كوچك­تر شدن اجزای تشكیل دهنده­ی قطعات الكترونیكی، بررسی نانو ساختارها اهمیت زیادی در زمینه­ علوم و صنعت پیدا كرده است. خواص فیزیكی این نانو ساختارها، بویژه خواص الكترونی و اپتیكی آن­ها، به رفتار و حالت­های الكترونی آن­ها بستگی دارد. از این­رو، محاسبه حالت های الكترونی مواد و تعیین ساختار نواری انرژی در آن­ها از مهمترین مباحث پژوهشی نظری و تجربی در فیزیكماده چگالاست. با توجه به این كه بطور کلی گاز الكترون در یك جامد یك سامانه برهم كنش­گر است، بنابراین راه حل اساسی برای محاسبه حالت­های الكترونی مواد به حل مسئله بس- ذره­ای منتهی می­شود. از این­رو، از آغاز پایه گذاری علم فیزیك ماده چگال، تلاش پژوهشگران بر این بوده است تا بعنوان یك تقریب، مسئله بس- ذره­ای گاز الكترون جامد را به یك مسئله قابل حل تبدیل نمایند. كلیه متون مربوط به زمینه ماده چگال و روش­های مختلف و گوناگون محاسبات ساختار نوارهای انرژی الكترونی جامدات، حكایت از به كارگیری انواع تقریب­هایی است كه برای حل معادله شرودینگر انجام می­شود. خوشبختانه علی­رغم تقریبی بودن روش­های بس­- ذره­ای، این روش­ها موفقیت عملی فوق­العاده­ای را از خود نشان داده­اند و بنابراین در مواردی كه پیچیدگی­های ناشی از آثار برهم­كنش الكترون­ها در رفتار نهایی سامانه مؤثر باشند باید در حد امكان و با روش­های مختلف حداكثر آثار بس- ذره­ای را در محاسبات دخالت داد. در هر صورت باید توجه داشت که هر روش تقریبی گستره اعتبار خاصی دارد.

اما امروزه، هدف اغلب پژوهش­های نظری بر پایه مکانیک کوانتوم، در زمینه مباحث فیزیک ماده چگال و شیمی، یافتن برهم­کنش­های اصلی نمی­باشد بلکه پرداختن به حل معادله شرودینگر از یک تابع هامیلتونی مشهور است که از حل آن اطلاعات مفیدی حاصل می­شود. به­ هرحال این هامیلتونی یک مسئله بس- ذر­ه­ای را توضیح می­دهد و برای تعداد بیشتر از 10 الکترون، حل دقیق آن از لحاظ عددی عملاً امکان پذیر نیست. بعلاوه حل دقیق آن، شامل مجموعه­ای از اطلاعات است که بدون ساده­سازی و تجزیه و تحلیل، به سختی قابل فهم است و برای یک مسئله و شرایط مشخص حاوی تعداد زیادی جزئیات است، که احتمالاً مورد علاقه نیست [1]. بنابراین بازنویسی مجدد مسئله و کار با توابع هامیلتونی مؤثر یا مقادیر انتظاری انتخاب شده که برای حل یک مسئله کاهش یافته مناسب می­باشند، اغلب بهتر است. این روش بطور ایده­ال هم محاسبه و هم تجزیه و تحلیل مقادیر مدنظر را ساده خواهد نمود.

نظریه تابعی چگالی[1] (DFT) [2و3] یكی از متداول­ترین روش­هایی است كه برای محاسبات خواص حالت پایه طراحی شده است و بر پایه اطلاع از تابع چگالی n(r) بجای تابع موج بس- ذره­ای كاملاز یك سیتم N ذره­ای پایه­گذاری شده است. مبانی نظریه DFT بر اساس نظریه هوهنبرگ-كوهن- شم [2] بصورت زیر است:

1- چگالی الکترونی حالت پایه از یک سامانه برهم­کنشی از الکترون­، می­تواند بطور کامل، پتانسیل خارجی­ v®، که الکترون­ها تجربه می­کنند و بنابراین هامیلتونی، تابع موج بس- ذره­ای، و همه کمیت­های مشاهده پذیر از سامانه، را تعیین ­کند.

2- یک تابعی F[n]وجود دارد بطوری­که انرژی کل E[n] می­تواند بصورت زیر نوشته شود:

(1-1)

این F یک تابعی عمومی است بطوری­که وابستگی تابعی­اش به چگالی برای همه سامانه­های با برهم­کنش ذره- ذره مشابه، یکسان است.

    1. حالت پایه این سامانه را می­توان از طریق کمینه کردن تابعی انرژی کل E[n]برحسب چگالی بدست آورد.

معادلات كوهن- شم [2](KS) که در سال 1965 معرفی گردید، نظریه تابعی چگالی را به ابزاری خاص برای بدست آوردن چگالی حالت پایه تبدیل كرد. كوهن- شم سامانه برهم­كنش­گر واقعی را كه در آن تمام الكترون­ها به هم مربوط­اند و تحت تأثیر پتانسیل واقعی سامانه قرار دارند را با سامانه­ای غیر برهم­كنش­گر كه در آن ذرات در معرض پتانسیل مؤثری قرار می­گیرند، عوض كردند. با معرفی یك سامانه فرضی، سامانه کوهن- شم، شامل الكترون­های بدون برهم­كنشی و با اعمال یك میدان متوسط موضعی شامل پتانسیل هارتری، پتانسیل خارجی و برهم­كنش­های تبادلی- همبستگی[3](xc)، در روشی مشابه با روش هارتری- فوك به معادلات خود- سازگاری رسیدند كه با روش آن­ها چگالی حالت پایه سامانه محاسبه می­گردد. با قرار دادن این چگالی در تابعی انرژی، انرژی حالت پایه محاسبه می­شود. درطرح کوهن- شم، الکترون­ها ازیک معادله شروینگر تک- ذره­ای ساده با یک پتانسیل خارجی مؤثر vKSپیروی می­نمایند:

(2-1)

اوربیتال كوهن- شمiφ و ویژه مقادیر كوهن- شمiε بدست آمده، بطور کلی دارای یک معنی و مفهوم فیزیکی مستقیمی نمی­باشند اما برای ساختن چگالی درستی از سامانه برهم­كنشی بر طبق رابطه زیر استفاده می­شوند:

(3-1)

با توجه به این­كه vKSتابعی از چگالی الكترونی است، این معادلات باید بصورت خود سازگار حل شوند. پتانسیل مؤثر vKSمعمولاً بصورت زیر نوشته می­شود:

(4-1)

در این معادله، جمله اول پتانسیل خارجی، برهم­كنش كولنی بین الكترون­ها و هسته، می­باشد و جمله دوم شامل قسمت كلاسیكی برهم­كنش الكترون- الكترون (هارتری) می­باشد. پیچیدگی مسئله در پتانسیل همبستگی- تبادلی vxc[n]® نهفته است كه بصورت vxc[n]®=δExc[n]/δn® تعریف می­شود كه در آن Exc[n] انرژی همبستگی- تبادلی است.

تقریب­های بسیار مؤثری برای محاسبه Exc[n] بیان شده است، نظیر تقریب چگالی موضعی[4] (LDA) [3] یا تقریب گرادیان تعمیم یافته[5] (GGA) [4] و بسیاری از خواص حالت پایه نظیر پارامترهای شبكه یا فركانس­های فونونی، امروزه با استفاده از اصول اولیه با دقتی حدود چند درصد محاسبه می­شوند. با این وجود خاصیت­های حالت پایه­ای وجود دارند که حتی برای سامانه­های ساده بخوبی انجام نشده است. تنها حدود 10% از انرژی­های پیوندی در LDA محاسبه می­شوند و یا گزارش­های نادرستی كه برای خاصیت­های پاسخ استاتیك، همانند ثابت دی­الكتریكε، كه اغلب بطور قابل ملاحظه­ای زیاد محاسبه می­شوند، بیان شده است [5]. سامانه­های همبستگی قوی نیز مثالی است كه تقریب­های ذكر شده بالا قادر به توصیف خواص الكترونی و اپتیكی آن­ها نمی­باشند [6]. این­چنین مسئله­هایی در محاسبه خاصیت­های حالت پایه، در اعتبار استفاده از تقریب­های بكارگیری شده، محدودیت­هایی ایجاد می­كند.

نکته مهم دیگر از حالت پایه مربوط به نظریه تابعی چگالی كوهن- شم، برانگیختگی­ها (پاسخ اپتیكی به میدان الكتریكی وابسته به زمان) می­باشند كه در این نظریه قابل دسترس نیستند. البته هیچ اشكالی به تقریب­های موجود وارد نیست، بلكه واقعیت این است كه نظریه تابعی چگالی برای توصیف ­چنین پدیده­هایی کارآمد نیست. در حقیقت، حتی اگر بتوانیم ویژه مقادیر كوهن- شم را بصورت دقیق محاسبه كنیم، اختلاف آن­ها لزوماً نزدیك به انرژی­های برانگیخته اندازه­گیری شده، نخواهد بود و دوم این­كه آن­ها برای انرژی الكترون­های اضافه شده یا حذف شده هیچ توضیحی ندارند. بنابراین شکاف انرژی كوهن- شم در گزارشات عمومی نسبت به شکاف­های انرژی اندازه­گیری شده، بسیار كوچك است كه این به تقریب­های انتخاب شده برای پتانسیل­های همبستگی- تبادلی وابسته است. اگر بخواهیم با یك هامیلتونی مؤثر كه بتواند ویژه مقادیر را برای انرژی الكترون­های اضافه شده به سامانه یا حذف شده از آن، یا بعبارت دیگر انرژی­های برانگیختگی، تعیین کند کار کنیم، اطلاع از چگالی حالت پایه کافی نیست. برای این منظور دو رهیافت ویژه را مورد توجه قرار می­دهیم:

ابتدا، چگونگی انتشار و نوسانات ذرات در سامانه مورد نظر را بررسی می­کنیم كه منجر به پیدایش توابع همبسته مرتبط با توابع پاسخ می­شود (همانند پاسخ خطی برای جذب اپتیكی) بطوری­که این توابع همبسته، توابع گرین تك ذره، دو ذره و یا مراتب بالاتر هستند. با استفاده از تابع گرین تك- ذره­ای كه مربوط به انتشار الكترون یا حفره است، می­توان انرژی الكترون اضافه شده یا حذف شده را اندازه­گیری كرد. بعنوان مثال می­توان به آزمایشات اندازه­گیری مستقیم و معكوس تابش نور به ماده اشاره کرد[6]. علاوه بر این انرژی­های برانگیختگی را می­توان از قسمت حفره- ذره­ی تابع گرین دو ذره ای، كه به سهم خود قطب­هایی در انرژی­های برانگیختگی دارد، بدست آورد. بخش کاهش­پذیر از تابع چهار- نقطه­ای L(r,r1,r´,r1´) مربوط به تابع گرین دو- ذره­ای، منجر به تابع پاسخ دونقطه ای (r,r´, ω)χ می­شود كه طیف قابل اندازه­گیری، همانند طیف جذب و یا طیف اتلاف انرژی الكترون[7](EELS) را مشخص می­كند. نظریه اختلال بس- ذره­ای[8] (MBPT)، چارچوبی از تقریب­های مناسب برای این­چنین توابع گرین، كه قابل دست­یابی هستند، ارائه می­دهد. بطور خاص تقریب GW، كه در سال 1965 بوسیله لارس هدین[9] [7] معرفی شد، بصورت بسیار موفق انرژی الكترون­های اضافه شده یا حذف شده برای فلزات، نیمرساناها و نارساناها را توصیف می­كند و بنابراین یكی از روش­های مورد انتخاب برای توصیف آزمایش­هایی همچون اندازه­گیری مستقیم و معكوس تابش نور به ماده می باشد. در خصوص برانگیختگی­های طبیعی، معادله بته – سالپیتر[10](BSE)، نقطه شروع خوبی برای تقریب­هایی از χ [11-8] خوهد بود. بنابراین، برای یك توصیف كامل و درك فیزیكی قابل اطمینان از یك سامانه برهم­كنش­گر، بعلت ظاهر شدن توابعی نظیر L(r,r1,r´,r1´) كه مهمترین خاصیت آن­ها غیر جایگزیده بودن آن­هاست، بجای توابع جایگزیده n(r)، هزینه بالای محاسباتی باید پرداخت شود.

دومین راه، محاسبه تحول زمانی تابعی چگالی برای سامانه­ای است كه در معرض یك پتانسیل خارجی وابسته به زمان قرار گرفته است. تابع پاسخ χ، برای مثال، بطور مستقیم از رابطه پاسخ خطی بین تغییرات پتانسیل خارجی و چگالی القاء شده بدست می­آید . این روش باعث تعمیم نظریه تابعی چگالی به نظریه تابعی چگالی وابسته به زمان[11](TDDFT) [16- 12] می­شود. با مبنا قرار دادن نظریه رانگ- گراس[12]، می­توان بطور مستقیم خط سیر مکانیک کوانتومی در TDDFT از سامانه تحت تاثیر توسط پتانسیل خارجی وابسته به زمان را، از طریق بررسی کمیت مورد نظر در بینهایت (به جای به کمینه رسانیدن انرژی کل، آن­طوری که برای حالت پایه انجام شد)، مشابه با مکانیک کلاسیک، بدست آورد. بنابراین می­توان معادلات کوهن- شم وابسته به زمان را بصورت تعمیمی از حالت استاتیک بدست آورد و از آن­ها توابع پاسخ توضیح دهنده برانگیختگی­های طبیعی سامانه را محاسبه کرد. در این حالت، مشکل پیدا کردن تقریب­های مناسب برای پتانسیل همبستگی- تبادلی وابسته به زمان vxc[n](r,t) می­باشد. باید توجه داشت که وابستگی تابعی به چگالی در کل فضا و در همه زمان­های گذشته می­باشد. تقریب­های زیادی برای سامانه­های محدود پیشنهاد و امتحان شده­اند. حتی تقریب بسیار ساده چگالی موضعی بی­درو[13](ALDA که می­توان آن­ را LDA وابسته به زمان نیز نامید) که بصورت داده می­شود، در بسیاری از موارد بسیار موفق بوده است [12و 17].

امروزه، استفاده از روش­هایی نظیر GW ، BSE و TDDFT بطور مداوم در حال گسترش است که در آن برهم­کنش­ها مهم می­باشند. البته حل مستقیم معادله شرودینگر امکان­پذیر نمی­باشد. پژوهش حاضر حاوی مرور و بررسی روش­های MBPT، GW و BSE، برای سامانه­های پیچیده درزمینه­های نانوفناوری، ذخیره داده­ها و الکترونیک نوری[14] می­باشد.

فصل اول: نظریه تابعی چگالی

1-1- نظریه تابعی چگالی

از آنجایی­که پژوهش حاضر مربوط به شبیه­سازی نظری سامانه­های واقعی مورد استفاده در فن آوری­های قابل سنجش می­باشد، از روش­های بكارگیری شده و مؤثر برای موفقیت این مطالعه استفاده می­كنیم. برای درك خواص حالت پایه الكترونی سامانه، از روش محاسبات اولیه[1] بر پایه نظریه تابعی چگالی (DFT) بهره گرفته­ایم. گرچه كارآیی نظریه تابعی چگالی شناخته شده است اما برای در نظر گرفتن خصوصیت­های حالت برانگیخته، مربوط به برانگیختگی­های طبیعی و بار نظیر انتشار و جذب اپتیکی، مجبور به استفاده از نظریه اختلال بس- ­ذره­ای(MBPT) خواهیم بود.

بنابراین این بخش و بخش بعدی را با خلاصه­ای از بعضی ویژگی­های مهم و البته شناخته شده مربوط به روش­های DFT و MBPT مورد استفاده در كدهای كامپیوتری، برای سامانه مورد نظر دنبال می كنیم.

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...

[چهارشنبه 1399-10-17] [ 03:14:00 ق.ظ ]




1-17-2 افق رویداد…………………………………. 22

1-17-3 افق ظاهری………………………………….. 23

فصل دوم: نگاهی به نسبیت عام و نظریه برنز دیكی

2-1 معادله میدان انیشتین………………………………….. 27

2-2 نظریه برنز دیکی………………………………….. 33

فصل سوم: كیهان شناسی برنز دیكی همراه با مدل های انرژی تاریك

3-1 معادلات عمومی………………………………….. 42

3-1-1 معادلات بقاء………………………………… 42

3-1-2 كنش……………………………………. 43

3-1-3 معادلات برنز دیكی شبه فریدمان……………………….. 44

3-2 مدل ایج گرافیک جدید برهمکنشی انرژی تاریک در کیهان شناسی برنز دیکی…….4

3-2 مدل گوست برهمکنشی انرژی تاریک در کیهان شناسی برنز دیکی…………….48

3-3 مدل انرژی تاریک گوست تعمیم یافته در کیهان‏شناسی برنز دیکی………….50

3-4 میدان اسكالر كوینتسنس در میدان اسكالر برنز دیكی…………………….. 54

فصل چهارم: بررسی مدل هولوگرافیك با انواع افق ها

4-1 مدل هولوگرافیك انرژی تاریك در کیهان شناسی برنز دیكی با افق رویداد……61

4-2 انرژی تاریک هولوگرافیک در کیهان شناسی برنز دیکی با قطع گراند-اولیور…….64

4-3 مدل انرژی تاریک هولوگرافیک در کیهان شناسی برنز دیكی با قطع افق ظاهری……68

فصل پنجم: نتیجه گیری

نتیجه گیری………………………………….. 82

فهرست منابع و مؤاخذ…………………………………. 84

چکیده:

در این پایان نامه ما ابتدا مروری بر كیهان شناسی و معادلات حاكم بر آن داشته و نظریه گرانش انیشتن و نظریه برنز دیكی را مورد بررسی قرار می دهیم. همچنین مدل های مختلف انرژی تاریك از جمله مدل كوینتسنس، مدل ایج گرافیك جدید، مدل گوست برهمكنشی و مدل گوست تعمیم یافته را در كیهان‎شناسی برنز دیكی مورد مطالعه قرار خواهیم داد و خواهیم دید تمام این مدل ها در حضور برهمكنش انبساط شتابدار را راحتتر از گرانش انیشتین نتیجه خواهند داد. در انتها نیز مدل هولوگرافیك را با انواع افق ها بررسی می كنیم. كار اصلی ما در این پایان نامه بررسی مدل هولوگرافیك با افق ظاهری است. كاربرد كیهانی چگالی انرژی برهمكنشی انرژی تاریك را در كیهان شناسی برنز دیكی مورد مطالعه قرار دادیم و پارامتر معادله حالت و پارامتر كندشوندگی را برای مدل هولوگرافیك انرژی تاریك به دست آوردیم. سپس افق ظاهری اندازه گیری شده در كره افق را به عنوان قطع مادون قرمز انتخاب كردیم و یافتیم هنگامی كه چگالی انرژی هولوگرافیك با معادله میدان برنز دیكی تركیب می شود، پارامتر معادله حالت غیر برهمكنشی انرژی تاریك می تواندخط فانتوم را قطع كند. هنگامی كه برهمكنش بین انرژی تاریك و ماده تاریك در نظر گرفته شود انتقال پارامتر معادله حالت انرژی تاریک به رژیم فانتوم زودتر از هنگامی است كه از معادله میدان انیشتین استفاده می كنیم.

مقالات و پایان نامه ارشد

مقدمه:

تاریخچه كیهان شناسی به عنوان یك علم به سال 1915 بعد از پیدایش نسبیت عام باز می گردد. قبل از نسبیت عام توسط انیشتین نظریات مبهمی توسط فلاسفه و فیزیكدانان در مورد پیدایش و تحول كیهان ارائه شده بود اما به دلیل نداشتن پشتوانه محكم نظری و تجربی، سست و غیر مطمئن بود. در سال 1920 ادوین هابل انبساط عالم را كشف كرد. با این كشف به همراه كشف زمینه ریز موج كیهانی در سال1960 كیهان شناسی وارد مرحله مشاهده ای شد اما همچنان بر اصل كوپرنیكی، كه می گوید جهان هیچ مركزی ندارد، استوار است. بررسی دقیق افت و خیزهای كوانتومی در زمینه ریز موج كیهانی كه نخستین نشانه تشكیل ساختار در كیهان می باشد، امكان مطالعه دقیق رشد ناهمگنی ها و تشكیل ساختارهای اولیه را فراهم آورد. ارائه نظریه تورم در سال 1918 و تكمیل آن در سال های بعد منشأ كوانتومی این افت و خیزها را تا حدی روشن ساخت. تعداد زیادی از مشاهدات كیهان شناسی شبیه[1] و[2] از انبساط شتابدار تندشونده جهان حكایت دارند. بررسی دقیق تر این داده های كیهانی نشان داد كه برای رسیدن به یك تصویر سازگار از ساختارهای بزرگ كیهانی و نحوه تشكیل آن ها لازم است كه مقادیر قابل توجهی ماده و انرژی به صورت تاریك در لابلای ستارگان و كهكشان ها وجود داشته باشد به گونه ای كه ماده مرئی تنها حدود 4 درصد از كل ماده و انرژی كیهان را به خود اختصاص می دهد! پس عامل این انبساط چیز دیگری است. ماده ای با فشار منفی كه عامل ناشناخته این انبساط است. بنابراین كشف ماهیت ماده و انرژی تاریك یكی از بزرگترین تحولات فیزیك و كیهان شناسی خواهد بود كه ممكن است درك ما را از مكانیزم های بنیادی طبیعت دچار تحول كند [1]. برای توجیح این مشكل نظریات زیادی در چند دهه اخیر ارائه شد. اولین مدل مطرح شدهاست كه در آن از ثابت كیهان شناسی به عنوان انرژی خلأ یاد شده است [2]. همچنین مدل های دیگری نیز وجود دارند كه منطبق بر اصل هولوگرافیك هستند از قبیل مدل هولوگرافیك، ایج گرافیك و…

فصل اول: مقدمه ای بر کیهان شناسی

1-1- اصول کیهان شناسی

برای بررسی کیهان اصولی را به نام اصل کیهان شناسی[1] فرض می کنند:

۱-جهان همگن[2] است.

۲-جهان همسانگرد[3] است.

3-هیچ نقطه ای در جهان بر نقاط دیگر ارجح نیست.

بنا به شرایط اولیه و جزئیاتی که نظر گرفته می شود الگوهای متفاوتی برای سرآغاز و سرانجام کیهان پیشنهاد شده است. الگوی کیهان شناختی که امروزه مورد پذیرش اکثریت جامعه علمی است به مدل مهبانگ مشهور است. طبق این نظریه که مقبول ترین نظریه در پیدایش جهان است، همه ماده و انرژی که هم اکنون در جهان وجود دارد زمانی در گوی کوچک بی نهایت سوزان ولی فوق العاده چگال متمرکز بوده است. این آتشگوی کوچک حدود 15 میلیارد سال قبل منفجر شد و همه مواد در فضا پخش شدند. با گذشت زمان این گسترش و پراکندگی ادامه یافت. تراکم توده هایی از این مواد در نواحی مختلف باعث بوجود آمدن ستارگان و کهکشان ها در فضا شد، ولی گسترش همچنان ادامه دارد.

2-1- انرژی تاریک

داستان انرژی تاریک از سال 1998 آغاز شد. در آن زمان دانشمندان دریافتند که بسیاری از کهکشانهای دور دست با سرعتی بسیار بیشتر از آنچه که محاسبات موجود پیش بینی کرده اند، از یکدیگر دور می شوند. تا قبل از این، کیهان شناسان همگی فکر می کردند که از سرعت گسترش به دلیل وجود گرانش بین کهکشان ها، کاسته شده است. به عبارت دیگر محاسبات دقیقا نشان دهنده آن بود که سرعت انبساط جهان لحظه به لحظه در حال افزایش است و از سرعت این انبساط کاسته نمی شود. ستاره شناسان به این نتیجه دست یافته اند که افزایش سرعت گسترش کائنات وابسته به عاملی است که بر خلاف گرانش عمل می کند. این عامل به دلیل ماهیت ناشناخته اش انرژی تاریک نام گرفت. این عامل حدود 70% ماده و انرژی موجود در جهان را شامل می شود.

3-1- ماده تاریک

در سال 1934 فریتس تسویکی منجم امریکایی سوئیسی تبار با تحلیل داده های رصدی مربوط به مجموعه های کهکشانی به این نتیجه رسیدند که ماده موجود در این مجموعه در حدود 10 برابر ماده مرئی آن ها است و فقط این ماده مرئی قابل روئت است. تحلیل تسویکی بر پایه اندازه گیری سرعت کهکشان های منفرد مجموعه بود. اگر ماده نامرئی وجود نمی داشت تا کنون اکثر این مجموعه های کهکشانی از هم می پاشیدند. در آغاز این ماده را “ماده گم شده” نامیدند. اما اصطلاح درستی نبود، چیزی گم نشده بود، بلکه وجود داشت ولی ما نمی توانستیم آن را ببینیم. از این رو اصطلاح ماده تاریک[1] متداول شد. از این پس یک سوال اساسی مطرح شد: ماده تاریک چیست؟

4-1- تابش زمینه ریز موج کیهانی

مدل پیشنهادی برای جهان اولیه به عنوان تركیبی از ماده نسبیتی وتابش الكترومغناطیسی در حال تعادل برای اولین بار توسط گاموف[1] فیزیکدان روسی و همکارانش در سال 1945 برای توصیف سنتز هسته ‍ ای ارائه شد [3]. گاموف و همكارانش از طریق ذره زائی در عالم اولیه حساب کردند که امروزه دمای تابش زمینه باید حدود 25 درجه کلوین یعنی 25 درجه بالای صفر مطلق باشد. در آن زمان کسی این کار نظری را جدی نگرفت. در سال 1965، دیکی[2] فزیکدان مشهور از دانشگاه پرینتستون و همکارانش این مسئله را دوباره بررسی کردند و به دمایی کمتر از دمایی که گاموف محاسبه کرده بود رسیدند. در همان سال در آزمایشگاه بل، دو نفر به نامهای پنزیاس[3] و ویلسون[4] به طور تصادفی همهمه ایی را که در تمام جهات مزاحم امواج بود کشف کردند [4]. دیکی و همکارانش به سرعت متوجه شدند که این همان تابشی است که آنها کشف کردند. ماهوارهCOBE در چند سال گذشته تحقیق نهایی را در مورد همخوانی تابش رصدی با محاسبات نظری انجام داده و دمای 7/2 درجه کلوین را اندازه گرفته است. تابش پس زمینه كیهانی ابتدا به شدت گرم بوده و به خاطر انبساط جهان دارای انتقال به سرخ شده و به دمای كنونی رسیده است. مشاهدات هاکی از آن است که شدت CMB از منحنی تابش حرارتی جسم سیاه با ناهمسانگردی[5] به اندازهتبعیت می کند.

5-1- اصول نسبیت عام

1-5-1- اصل هم ارزی

اساس نسبیت عام یک برداشت ساده از طبیعت است. آسانسوری را تصور کنید که وزنه تعادلش پاره شده است و آزادانه سقوط می کند. شخصی که در این آسانسور است احساس بی وزنی می کند، یعنی اگر روی ترازو ایستاده باشد عقربه ترازو صفر را نشان خواهد داد. پس نیروی گرانش چه شده است؟ قطعا از بین نرفته است! هر شیئی را که در این آسانسور رها کنید، در همان محل اولیه خود می ایستد. پس اگر دسترسی به داخل آسانسور نداشته باشید خواهید گفت که هیچ نیرویی بر اشیاء داخل آسانسور وارد نمی شود و چون می دانیم که نیروی گرانش به سمت پایین وارد می شود، باید نتیجه بگیریم که نیروی دیگری برابر اما در خلاف جهت گرانش بر اشیاء وارد می شود که گرانش را خنثی می کند. این نیرو ناشی از وجود شتاب برابر، یعنی سقوط آزاد، به سمت پایین است، که نیرویی برابر گرانش اما به سمت بالا بر اشیاء وارد می کند. پس گرانش هم ارز است با شتاب. انیشتین این واقعیت را اصل هم ارزی[1] نامید. این اصل مبنای فرمول بندی وی از برهمکنش گرانشی شد.

اصل هم ارزی و مثال فوق تنها زمانی درست است كه جرم لختی (جرمی كه طبق قانون دوم نیوتن مشخص می كند كه شما در اثر یك نیرو چقد شتاب می گیرید) و جرم گرانشی (جرمی كه طبق قانون گرانی نیوتن مشخص می كند كه شما چقدر نیروی گرانشی احساس می كنید)، یكسان باشند. اگر این دو جرم برابر باشند، همه اجسام در میدان گرانشی، مستقل از اینكه جرم آنها چقدر باشد، با یك آهنگ می افتند. اگر این اصل حقیقت نداشت، بعضی از اجسام تحت تاثیر گرانش، سریع تر می افتادند. در این صورت شما می توانستید كشش گرانش را از شتاب یكنواخت كه در آن همه چیز با یك آهنگ می افتد، تشخیص دهید [5].

این نظریه پیامدهای مهمی دارد. با حذف نیرو، و وارد کردن مفهوم میدان، نظریه گرانش به یک نظریه میدان تبدیل می شود مانند الکترومغناطیس.

2-5-1- اصل ماخ

ارنست ماخ، فیزیكدان و فیلسوف اتریشی در اثر خود به نام علم مكانیك[1] كوشش نمود تا نظریه نیوتنی را با نظریه جدیدی جایگزین كند كه فاقد جنبه های مطلق نگری باشد. به اعتقاد او یك نظریه نباید حاوی هیچ ساختار مطلقی باشد. نظیر سایر نسبی گرایان از دیدگاه ماخ فضا مفهومی انتزاعی از موقعیت ذرات نسبت به یكدیگر است. به عبارت دیگر قرار گرفتن ذرات در كنار هم است كه فاصله و فضا را تعریف می كند. انیشتین[2] از جمله معاصرین ماخ است كه شدیدا تحت تأثیر افكار و آراء وی امیدوار به یافتن این نیروهای ماخی بوده و نظریه نسبیتی گرانش خود را در راستای رسیدن به نظریه ای كه تأمین كننده نظرات ماخ باشد فرموله نمود.

اصل ماخ[3]، اساسی ترین اصل نسبت عام به صورت های مختلفی تعبیر می شود. قوی ترین صورت این اصل این است که ماده هندسه را تعیین می کند و عدم وجود آن به معنای عدم وجود هندسه است. نسبیت عام با این صورت اصل ماخ سازگار نیست. زیرا اگر ماده وجود نداشته باشد، معادلات نسبیت عام دارای حل هستند و هندسه های مختلفی را بیان می کنند.

صورتی از اصل ماخ که با نسبیت عام سازگاری ندارد و نزدیک ترین صورت به بیان ماخ است این گونه است که: یک جسم در فضای کاملا تهی، هیچ خاصیت هندسی به خود نمی گیرد اما صورتی از اصل ماخ که نسبیت عام با آن سازگار است عبارت است از :

توزیع ماده چگونگی هندسه را تعیین می کند. ماده تعیین می کند که فضا چگونه خمیده شود [6].

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...

 [ 03:13:00 ق.ظ ]




4-1 مقدمه …………………………………………………………………………. 53

4-2 محاسبه پتانسیل کل هسته برای واکنش­های ………………….. 54

4-2-1 محاسبه پتانسیل کولنی ……………………………………………… 54

4-2-2 محاسبه پتانسیل هسته­ ای …………………………………………. 55

4-3 سطح مقطع همجوشی واکنش­های…………………………………….. 61

4-4 پیشنهادات …………………………………………………………………. 70

منابع………………………………………………………………………………. 71

چکیده:

در این تحقیق به بررسی توانایی مدل شبکه ای FCC برای مطالعه برهم كنش همجوشی یون های سنگین پرداخته ایم. و با استفاده از پیشگویی مدل شبکه ای FCC برای توزیع ماده هسته ای، هسته های برهم کنشی و نیروی برهم كنش نوكلئون- نوكلئون M3Y-Paris پتانسیل كل را برای واكنش های ، و محاسبه كرده ایم. نتایج حاصل از ارتفاع سد و محل سد در توافق خوبی با نتایج حاصل از سایر مدل های نظری مانند مدل های دابل-فولدینگ و باس می باشد. در نتیجه این مطالعه نشان می دهد مدل شبکه ای FCC می تواند مدل مناسبی برای مطالعه برهم كنش های همجوشی یون های سنگین باشد.

فصل اول: معرفی مدل های هسته ای

1-1- مقدمه

برای شرح خواص و حالت نوكلئون ها به تابع موج سیستم نیاز داریم. این كار برای هسته های ساده امكان پذیر می باشد، در حالی كه برای هسته های بزرگ بدست آوردن تابع موج كلی حتی اگر امكان پذیر هم باشد بسیار پیچیده تر از آن است كه مورد استفاده قرار گیرد. مدل ها قیاس بین هسته و سیستم های بسیار ساده فیزیكی می باشند كه از طریق آنها می توان به بررسی مسایل هسته ای پرداخت]1[.

در طی چندین سال و با استدلال های بی شمار مدل های مختلفی برای بررسی و مطالعه ساختار هسته توسط فیزیكدانان نظری معرفی شده است، اما از آنجایی كه مدل های مختلف هسته ای در توصیف كامل خواص هسته ناموفق بوده اند. امكان پیشنهاد مدلی واحد برای مطالعه ساختار هسته از بین رفته است.

پایان نامه و مقاله

مدل شبكه ای FCC[1] در سال 1937 توسط ویگنر[2] مدل سازی شده است]2.[ از آنجایی كه این مدل توانایی بازتولید خواص مدل های ذره مستقل[3]، قطره مایع[4] و خوشه ای[5] را دارا می باشد. ادامه این فصل به معرفی این مدل ها اختصاص یافته است. همچنین در فصل دوم به طور كامل مدل شبكه ای FCC را معرفی كرده ایم. معیار سنجش هر مدل شرح كامل خواص هسته ای و توافق مناسب با داده های تجربی می باشد، بنابراین در فصل سوم خواص هسته را از طریق این مدل مطالعه نموده ایم. هدف اصلی معرفی این مدل ایجاد هسته از طریق مدل شبكه ای FCC و بررسی كارآمد بودن این مدل در برهم كنش یون های سنگین می باشد. در نتیجه، بعد معرفی سایر مدل ها نظیر مدل دابل-فولدینگ[6] و پتانسیل باس[7] برای محاسبه پتانسیل هسته ای با استفاده از نیروی برهم كنش نوكلئون- نوكلئون M3Y-Paris و توزیع نوكلئون ها از طریق این مدل پتانسیل هسته ای را محاسبه كرده ایم. بنابراین فصل چهارم این تحقیق به بررسی محاسبه پتانسیل هسته ای و سطح مقطع همجوشی واكنش های ، و نتیجه گیری اختصاص یافته است.

2-1- معرفی مدل های هسته ای

از جمله مدل های متداول برای مطالعه ساختار هسته مدل های ذره مستقل و مدل دسته جمعی[1] می باشد.

مدل ذره مستقل: در مدل ذره مستقل ذرات در پائین ترین مرتبه صورت مستقل در یك پتانسیل مشترك حركت می كنند. مانند مدل لایه ای[2].

مدل دسته­ جمعی: در مدل دسته جمعی یا برهم كنش قوی، به علت برهم كنش های كوتاه برد و قوی بین نوكلئون ها، نوكلئون ها قویاً به یكدیگر جفت می شوند. مانند مدل قطره مایع]3[.

1-2-1- مدل قطره مایع

از جمله مدل های اولیه برای مطالعه ساختار هسته مدل قطره مایع می باشد كه توسط بور[1] وفون وایكسر[2] از روی قطره های مایع پیشنهاد شده است. در این مدل هسته بصورت قطرات مایع باردار تراكم ناپذیر با چگالی زیاد درنظر گرفته می شود كه همچون مولكول ها در یك قطره مایع دائماً در حال حركت كاتوره ای می باشند و هسته تمامیت خود را با نیروهای مشابه كشش سطحی قطره مایع حفظ می كند. این مدل برای بیان روند تغییر انرژی بستگی نسبت به عدد اتمی و واكنش هسته ای مفید می باشد.

مدل قطره مایع برای این سوال كه چرا بعضی از نوكلئیدها مانند با نوترون های كند شكافته می شوند و برخی دیگر نوترون های سریع پاسخ ساده ای دارد كه علت آن را انرژی فعال سازی بیان می كند، یعنی حداقل میزان انرژی كه هسته بتواند به قدر كافی تغییر شكل دهد. تغییر شكلی كه نیروهای رانش الكتریكی بتواند بر نیروهای جاذبه الكتریكی غلبه كند. این مقدار انرژی فعال سازی را می توان به یاری تئوری ریاضی مدل قطره مایع محاسبه نمود كه رابطه تعمیم یافته و كلی انرژی بستگی را می دهد. یكی از مهمترین واقعیت های موجود در هسته ثابت بودن تقریبی چگالی هسته است. حجم یك هسته با عدد A (تعداد نوكلئون) متناسب می باشد و این واقعیتی است كه در مورد مایعات نیز صادق می باشد.

در شکل (1-1) متوسط انرژی بستگی بر حسب نوکلئون رسم شده است. نظم و ثبات انرژی بستگی به ازای هر نوکلئون بصورت تابعی از عدد جرمی A و ثابت بودن چگالی هسته ای منجر به ارائه فرمول نیمه تجربی جرم و پیشنهاد مدل قطره مایع توسط وایسکر شد.

نخستین واقعیت لازم برای رسیدن به یک فرمول برای جرم، ثابت بودن تقریبی انرژی بستگی به ازای هر نوکلئون برای 50 است، بنابراین انرژی بستگی متوسط برای یک هسته نامتناهی بدون سطح باید دارای مقدار ثابتی مثل باشد، که همان انرژی بستگی ماده هسته ای است .از آنجایی که تعداد A ذره در هسته وجود دارد سهم حجمی آن ، در انرژی بستگی به صورت زیر می باشد. .

نوکلئون های سطحی پیوندهای کمتری دارند و اندازه متناهی یک هسته حقیقی منجر به یک جمله به صورت رابطه زیر در انرژی بستگی می گرددکه متناسب با سطح هسته بوده و انرژی بستگی را کاهش می دهد،

(1-2) .

انرژی کولنی ناشی از نیروی دافعه الکتریکی است که بین هر دو پروتون وجود دارد. برای سادگی فرض شده است، پروتون ها به صورت یکنواخت در سراسر کره ای به شعاع توزیع شده اند، با استفاده از معادله انرژی کولنی، ، سهم کولنی در انرژی بستگی به صورت زیر خواهد شد. از آنجایی که این انرژی باعث کاهش انرژی بستگی هسته ای می شود با علامت منفی در رابطه زیر قرار داده می شود،

انرژی تقارنی از اصل طرد ناشی می شود، زیرا این اصل برای آنکه هسته ای بخواهد نوعی از نوکلئون را بیشتر از نوع دیگر داشته باشد انرژی بیشتری مطالبه می کند، که عبارت تقریبی آن به صورت زیر است،

(1-4) .

با ترکیب نمودن روابط فوق انرژی بستگی به ازای هر نوکلئون رابطه ای که وایسکر پیشنهاد کرد به صورت زیر خواهد شد]4[،

(1-5)

مقادیر ثابت در این روابط با برارزش انرژی های بستگی مشاهده شده در آزمایش ها تعیین می شود.

2-2-1- مدل پوسته ای

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...

 [ 03:13:00 ق.ظ ]




2-7-4 غنای آرایه­ها…………………………………. 21

2-8 شاخص­های زیستی………………………………………. 21

2-8-1 شاخص زیستی BMWP……………………………… 22

2-9 سابقه و اهمیت تحقیق در جهان………………………….. 24

2-10 سابقه و اهمیت تحقیق در ایران………………………… 26

2-11 معرفی رودخانه­ی زاینده رود…………………………… 27

2-12 معرفی دریاچه­ی سد زاینده رود…………………………. 27

فصل سوم: مواد و روش­ها

3-1 انتخاب ایستگاه­های نمونه برداری……………………….. 29

3-2 روش نمونه برداری……………………………………. 31

3-2-1 نمونه برداری از آب……………………………. 31

3-2-2 نمونه برداری از کفزیان رودخانه…………………. 31

3-3 اندازه گیری فاکتورهای فیزیکی و شیمیایی آب……………… 31

3-4 شناسایی نمونه­های بی­مهرگان کفزی ………………………. 32

3-5 تحلیل داده­ها ………………………………………. 32

3-5-1 محاسبه­ی شاخص­های غنا و تنوع درشت بی­مهرگان کفزی……. 32

3-5-2 شاخص­های زیستی BMWP و ASPT……………………… 32

3-5-3 بررسی روند تغییرات زمانی و مکانی داده­ها…………. 32

3-5-4 بررسی همبستگی بین داده­ها………………………. 33

فصلچهارم:نتایج و بحث

4-1 بررسی روند تغییرات مکانی و زمانی پارامترهای کیفی آب رودخانه 34

4-1-1 دمای آب……………………………………… 34

4-1-2 اکسیژن محلول…………………………………. 36

4-1-3 BOD5………………………………………… 36

4-1-4 COD…………………………………………. 38

4-1-5 نیترات………………………………………. 38

4-1-6 pH………………………………………….. 39

4-1-7 هدایت الکتریکی……………………………….. 40

4-1-8 فسفات……………………………………….. 41

4-2 بررسی روند تغییرات مکانی و زمانی شاخص­های غنا و تنوع درشت بی­مهرگان کفزی 42

4-2-1 تعداد خانواده………………………………… 42

4-2-2 شاخص تنوع شانون………………………………. 44

4-2-3 شاخص تنوع مارگالف…………………………….. 45

4-2-4 شاخص تنوع سیمپسون…………………………….. 4۵

4-3 بررسی روند تغییرات مکانی و زمانی شاخص­های زیستی…………. 46

4-3-1 شاخص BMWP…………………………………… 46

4-3-2 شاخص ASPT……………………………………. 47

4-4 همبستگی بین داده­ها………………………………….. 48

4-4-1 همبستگی بین پارامترهای کیفی آب رودخانه………….. 48

4-4-2 همبستگی بین پارامترهای کیفی آب و شاخص­های محاسبه شده. 48

4-4-3 همبستگی بین شاخص­های محاسبه شده…………………. 49

فصلپنجم:بحثونتیجه­گیری

5-1 نتیجه گیری…………………………………………. 52

5-2 پیشنهادات………………………………………….. 54

نه

منابع………………………………………………… 55

 

 

 

فهرست اشکال

عنوان صفحه

شکل 3-1 موقیت ایستگاه­های نمونه برداری…………………….. 30

شکل 3-2 نمونه­ای از نمودار باکس- ویسکرپلات………………….. 33

شکل4-1 تغییرات دمای آب رودخانه در ایستگاه­های مورد مطالعه در فصول مختلف 35

شکل4-2 تغییرات میزان اکسیژن محلول آب رودخانه در ایستگاه­های مورد مطالعه در فصول مختلف ………………………………………………… 36

شکل 4-3 تغییرات میزان BOD5درماه­های مختلف …………………. 37

شکل 4-4 تغییرات میزان BOD5در ایستگاه­های نمونه برداری ………. 37

شکل 4-5 تغییرات COD در ایستگاه­های نمونه برداری در فصول مختلف سال 38

شکل 4-6 تغییرات نیترات در ایستگاه­های نمونه برداری در فصول مختلف سال 39

شکل 4-7 تغییراتpHدر ایستگاه­های نمونه برداری در فصول مختلف سال . 40

شکل 4-8 تغییرات هدایت الکتریکی در ایستگاه­های نمونه برداری در فصول مختلف سال 41

شکل 4-9 تغییرات فسفات در ایستگاه­های نمونه برداری در فصول مختلف سال 41

شکل 4-10 روند تغییرات تعداد خانواده­های بی­مهرگان درشت کفزی در ایستگاه­های نمونه برداری ……………………………………………….. 43

پایان نامه

شکل 4-11 درصد فراوانی راسته­های Ephemeroptera و Trichoptera در ایستگاه­های نمونه برداری 44

شکل 4-12 نسبت نمونه­های حساس بی مهرگان کفزی به شیرونومیده در ایستگاه­های نمونه برداری …………………………………………………….. 44

شکل 4-13 تغییرات شاخص تنوع شانون در ایستگاه­های نمونه برداری … 45

شکل 4-14 تغییرات شاخص تنوع مارگالف در ایستگاه­های نمونه برداری . 45

شکل 4-15 تغییرات شاخص تنوع سیمپسون در ایستگاه­های نمونه برداری . 46

شکل 4-16 تغییرات شاخص زیستی BMWP در ایستگاه­های نمونه برداری .. 47

شکل 4-17 تغییرات شاخص ASPT در ایستگاه­های نمونه برداری ……… 48

فهرست جداول

عنوان صفحه

جدول2-1 طبقه بندی کیفیت آب بر اساس شاخص شانون- وینر ……….. 20

جدول2-2 طبقه بندی کیفی آب بر اساس امتیاز کلی شاخصBMWP ……… 23

جدول 2-3 گروه بندی بر اساس ASPT………………………….. 23

جدول 3-1 موقعیت جغرافیایی ایستگاه­های نمونه برداری …………. 30

جدول 4-1 ضرایب همبستگی پیرسون بین پارامترهای کیفی آب ………. 49

جدول 4-2 ضرایب همبستگی پیرسون بین شاخص­های محاسبه شده و پارامترهای کیفی آب 50

جدول 4-3 ضرایب همبستگی پیرسون بین شاخص­های محاسبه شده ………. 51

فهرست پیوست­ها

عنوان صفحه

پیوست۱

جدول 1-1 استاندارد خروجی فاضلاب­ها ………………………… 60

جدول 1-2 استاندارد کمیسیون اروپایی برای آب­های مورد استفاده در تولید آب­های آشامیدنی …………………………………………………….. 62

پیوست2

جدول 2-1 آمار ماهیانه ی دبی ایستگاه های هیدرومتریسازمان آب منطقه ایدر زمان نمونه برداری ………………………………………………. 64

جدول 2-2 آمار دبی ایستگاه های هیدرومتری سازمان آب منطقه ای در زمان نمونه برداری 64

شکل 2-1 نمودار بارندگی ماهیانه در ایستگاههواشناسیکوهرنگ در استان چهارمحال و بختیاری ……………………………………………… 65

شکل 2-2 نمودار بارندگی ماهیانه در ایستگاه هواشناسی سامان در استان چهارمحال و بختیاری ……………………………………………… 65

پیوست3

جدول 3-1 امتیازهای هر خانواده در سیستم BMWP ……………… 66

جدول 3-2 معرفی گونه­های شناسایی شده در ایستگاه­های نمونه برداری . 69

جدول3-3 تراکم و فراوانی نمونه­های شناسایی شده در تاریخ 22 تیرماه 1392 70

جدول 3-4 تراکم و فراوانی نمونه­های شناسایی شده در تاریخ 2 شهریور ماه 1392 71

جدول 3-5 تراکم و درصد فراوانی نمونه­های شناسایی شده در تاریخ 20 مهر ماه ۱۳۹۲ 72

جدول 3-6 تراکم و درصد فراوانی نمونه­های شناسایی شده در تاریخ 5 آذر ماه 1392 73

جدول 3-7 تراکم و درصد فراوانی نمونه­های شناسایی شده در تاریخ 20 دی ماه ۱۳۹۲ 74

جدول 3-8 تراکم و درصد فراوانی نمونه­های شناسایی شده در تاریخ 3 اسفند 1392 75

جدول 3-9 تراکم و درصد فراوانی نمونه­های شناسایی شده در تاریخ 23 فروردین 1393 76

جدول 3-10 تراکم و درصد فراوانی نمونه­های شناسایی شده در تاریخ 10 خرداد 1393 77

شکل 3-1 نمودار میانگین میزان BOD اندازه گیری شده در ایستگاه­های مورد مطالعه در فصول مختلف ……………………………………………….. 78

شکل 3-2 نمودار میانگین میزان شاخص تنوع شانون محاسبه شده در ایستگاه­های مورد مطالعه در فصول مختلف ………………………………………… 78

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...

 [ 03:12:00 ق.ظ ]




1-9-4آنتی اکسیدان های سنتیک :. 25

1-10- ترکیبات فنلی در گیاهان.. 25

1-11- روش های ارزیابی اکسیداسیون روغن.. 26

1-11-1 عدد پراکسید. 26

1-11-2 میزان ترکیبات قطبی. 27

1-11-3 عدد کربونیل. 27

1-11-4 عدد یدی. 27

1-11-5 عدد اسیدی. 27

1-11-6 شاخص پایداری اکسایشی. 28

1-11-7 عدد کنژوکه. 28

فصل دوم.. 29

مروری بر تحقیقات انجام شده.. 29

فصل سوم.. 48

مواد و روشها.. 48

.. 48

3-2- لوازم آزمایشگاهی.. 48

3-3- تهیه و آماده کردن پودر گیاه هلپه.. 49

3-4- استخراج عصاره (عصاره گیری بوسیله شیکر(ماسراسیون)).. 49

3-5- آماده سازی نمونههای روغن.. 50

3-6- اندازه گیری ترکیبات فنولی.. 50

3-6-1- رسم منحنی استاندارد و معادله خط رابطه جذب و غلظت اسید گالیک (منحنی کالیبراسیون). 50

3-6-2- اندازهگیری ترکیبات فنولی روغن کانولای بدون آنتیاکسیدان سنتزی. 51

3-6-3- اندازه گیری ترکیبات فنولیک عصاره گیاه هلپه. 52

3-7- اندازهگیری ترکیبات توکوفرولی.. 52

3-7-1- ترسیم منحنی کالیبراسیون. 52

3-7-2- اندازهگیری ترکیبات توکوفرولی نمونه روغن بدون آنتیاکسیدان. 53

3-7-3- اندازهگیری ترکیبات توکوفرولی عصاره گیاه هلپه. 54

3-8- بررسی فعالیت آنتی اکسیدانی عصاره با آزمون حذف رادیکال های آزاد DPPH 54

3-9- آزمون پایداری روغن در طی 60 روز نگهداری در دمای 25 درجه سانتیگراد 55

3-9-2- اندیس اسیدی. 56

3-9-3- شاخص پایداری اکسایشی (OSI). 56

3-9-4- اندازگیری عدد پراکسید (PV). 56

3-9-5- اندازگیری عدد کربونیل. 58

3-9-7- اندازگیری مقدار کل ترکیبات قطبی. 59

3-9-7-1- آماده سازی سیلیکاژل. 59

3-9-7-2- پر کردن ستون کروماتو گرافی. 59

3-9-7-3- تهیه و آماده سازی نمونه وحلال جداسازی. 59

3-9-8- اندازهگیری عدد دیان مزدوج (کنژوگه). 60

3-9-9- اندازگیری عدد یدی. 60

3-10- تجزیه و تحلیل آماری.. 60

فصل چهارم.. 61

تجزیه و تحلیل داده ها.. 61

4-1- محتوای ترکیبات فنولیک.. 61

4-2- مقدار ترکیبات توکوفرولی.. 62

4-3- اندازه گیری فعالیت آنتی اکسیدانی، طبق آزمون درصد مهار رادیکال آزاد DPPH 63

4-4- بررسی خاصیت آنتیاکسیدانی عصارههای گیاه هلپه با غلظت ppm 200 در روغن کانولا 64

4-4-1- تغییرات عدد پراکسید در طی 60 روز نگهداری در دمای 25 درجه سانتیگراد 64

4-4-2- تغییرات عدد اسیدی در طی 60 روز نگهداری در دمای 25 درجه سانتیگراد 65

4-4-3- تغییرات عدد یدی در طی 60 روز نگهداری در دمای 25 درجه سانتیگراد 67

4-4-4- تغییرات عدد کنژوگه در طی 60 روز نگهداری در دمای 25 درجه سانتیگراد 68

4-4-5- تغییرات عدد کربونیل در طی 60 روز نگهداری در دمای 25 درجه سانتیگراد 69

4-4-6- تغییرات شاخص پایداری اکسایشی در طی 60 روز نگهداری در دمای 25 درجه سانتیگراد 70

4-4-7- تغییرات مقدار فنول در طی 60 روز نگهداری در دمای 25 درجه سانتیگراد 71

4-4-8- تغییرات مقادیر کل ترکیبات قطبی در طی 60 روز نگهداری در دمای 25 درجه سانتیگراد. 72

فصل پنجم.. 74

بحث و نتیجه گیری و پیشنهادات.. 74

5-1- شاخص کیفی روغن اولیه.. 74

5-2- اندازه گیری محتوای ترکیبات فنولیک.. 75

5-3- ترکیبات توکوفرولی.. 76

5-4- بررسی فعالیت آنتی اکسیدانی با آزمون درصد مهار رادیکال آزاد DPPH.. 77

5-5- آزمونهای پایداری روغن کانولا در طی 60 روز انبارمانی.. 78

5-5-1- عدد پراکسید. 78

5-5-2- تغییرات عدد اسیدی. 79

5-5-3- تغییرات عدد یدی. 80

5-5-4- تغییرات عدد کنژوگه. 81

5-5-5- تغییرات عدد کربونیل. 81

5-5-6- شاخص پایداری اکسایشی. 82

5-5-7- تغییرات ترکیبات فنولی. 83

5-5-8- مقادیر کل ترکیبات قطبی. 83

نتیجه گیری کلی:.. 84

پیشنهادات:.. 87

منابع.. 88

فهرست جداول

پایان نامه و مقاله

عنوانصفحه

جدول 4-1: میانگین مقدار فنول کل عصارهها با روش های مختلف عصاره گیری.. 60

جدول 4-2: میانگین مقدار توکوفرول عصاره با روش های مختلف عصاره گیری.. 61

جدول 4-3: میانگین درصد مهار رادیکال آزاد DPPH.. 62

جدول4-4: میانگین تغییرات عدد پراکسید در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 64

جدول4-5: میانگین تغییرات عدد اسیدی در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 65

جدول4-6: میانگین تغییرات عدد یدی در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری 66

جدول4-7: میانگین تغییرات عدد کنژوگه در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 67

جدول4-8: میانگین تغییرات عدد کربونیل در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 68

جدول4-9: میانگین تغییرات شاخص پایداری اکسایشی در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 69

جدول4-10: میانگین تغییرات مقدار فنول در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 70

جدول4-11: میانگین تغییرات ترکیبات قطبی در عصارههای مختلف در غلظت ppm 200 طی زمان نگهداری.. 72

جدول 5-1: ساختار اسید چرب روغن كانولای فاقد آنتی اكسیدان (صالحی و همکاران، 1393) 73

جدول 5-2: خصوصیات شیمیایی روغن كانولای فاقد آنتی اكسیدان (صالحی و همکاران، 1393) 74

فهرست اشکال

عنوان صفحه

شکل 3- 1- دستگاه شیکر.. 47

شکل3-2- منحنی استاندارد غلظت اسید گالیک در برابر میزان جذب خوانده شده درطول موج ٧۶٥ نانومتر.. 49

شکل 3-3- منحنی كالیبراسیون میزان آلفا- توكوفرول در برابر میزان جذب خوانده شده در طول موج 520 نانومتر.. 51

شکل 3-4- دستگاه اسپکتروفتومتر.. 53

شکل3-5- منحنی كالیبراسیون غلظت آهن ш در برابر جذب خوانده شده درطول موج 500 نانومتر 55

شکل 4-1: مقایسه میانگین مقدار ترکیبات فنولیک.. 60

شکل 4-2: مقایسه میانگین مقدار ترکیبات توکوفرولی.. 61

شکل 4-3: مقایسه میانگین درصد مهار رادیکال آزاد DPPH در غلظت ppm 200. 62

شکل 4-4: مقایسه میانگین تغییرات عدد پراکسید عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 63

شکل 4-5: مقایسه میانگین تغییرات عدد اسیدی عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 64

شکل 4-6: مقایسه میانگین تغییرات عدد یدی عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 65

شکل 4-7: مقایسه میانگین تغییرات عدد کنژوگه عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 67

شکل 4-8: مقایسه میانگین تغییرات عدد کربونیل عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 68

شکل 4-9: مقایسه میانگین شاخص پایداری اکسایشی عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 69

شکل 4-10: مقایسه میانگین تغییرات مقدار فنول عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 70

شکل 4-11: مقایسه میانگین تغییرات ترکیبات قطبی عصارههای مختلف در غلظت ppm 200 در روغن کانولا طی زمان نگهداری.. 71

چکیده

اکسیداسیون روغن­ها علاوه بر تغییر ویژگیهای روغن­ها، بر سلامت مصرف کنندگان تاثیر سوئی می­گذارد. یکی از مهمترین روشها، جهت جلوگیری از اکسیداسیون، استفاده از آنتی­اکسیدانها است. به دلیل اثرات مضر آنتی­اکسیدانهای سنتزی، در سال­های اخیر توجه زیادی به آنتی­اکسیدانهای طبیعی استخراج شده از گیاهان شده است. گیاهان منبع غنی از تركیبات فنلی هستند كه مهم ترین آنتی اكسیدان های طبیعی به شمار می آیند نیاز به آنتی اكسیدان های طبیعی در صنایع غذایی، آرایشی و دارویی باعث تحقیقات علمی گسترده ای در دهه های اخیر شده است. در این پژوهش اثر روش استخراج با سه نوع حلال (آب، اتانول و اتانول – آب 50 درصد) بر خصوصیت آنتی اکسیدانی عصاره گیاه هلپه ارزیابی شد تا مناسبترین روش استخراج برای استفاده بهینه از این محصول جانبی، تعیین شود. در این روش استخراج با حلال، گیاه خورد شده با سه حلال فوق به نسبت (1به 10) مخلوط و در مدت زمان 24 ساعت در دمای اتاق و بر روی شیکر با سرعت rpm 250 انجام شد. اندازه گیری فنل تام عصاره ها با استفاده از روش فولین سیوکالتیو و فعالیت آنتی اکسیدانی عصاره ها با استفاده از روش حذف رادیکال های آزاد DPPH اندازه گیری گردید. در ادامه سه نوع عصاره بدست آمده را با غلظت ppm 200 جهت پایدارسازی روغن کانولا در طی انبارمانی به آن اضافه شد و با آنتی اکسیدان BHA و نمونه شاهد در دمای 25 درجه سانتیگراد در فواصل زمانی 15 روزه و به مدت 60 روز با 8 شاخص پایداری اکسیداتیو از جمله OSI، عدد پراکسید، عدد کربنیل، عدد کونژوگه، ترکیبات فنولی، ترکیبات قطبی، اندیس اسیدی و اندیس یدی مقایسه گردید. نتایج بدست آمده نشان داد که بیشترین میزان فنول (ppm 03/232/61) بدست آمده مربوط به عصاره­ی (اتانول- آب) می­باشد که بر مبنای اسید گالیک بیان می­شود همچنین بیشترین میزان توکوفرول (ppm 87/258/95)، مربوط به عصاره­ی (اتانول- آب) می­باشد ولی مقدار آن از لحاظ آماری با سایر نمونه ها اختلاف معنی دار نداشت. همچنین بیشترین درصد مهار در آزمون حذف رادیکال­های آزاد (95/1±49/51) مربوط به عصارههیدروالکلی(اتانول- آب) ماسراسیون در غلظت ppm 200 میباشد. همچنین در همه آزمون­های پایدارسازی روغن کانولا بجز آزمون اندیس یدی و ترکیبات فنولی، نمونه حاوی عصاره اتانول – آب عملکرد بهتری نسبت به سایر نمونه ها داشتند.

واژگان کلیدی:گیاه هلپه، ترکیبات فنول، توکوفرول، DPPH، پایداری اکسایشی، روغن کانولا.

فصل اول

کلیات تحقیق

1-1- مقدمه:

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...

 [ 03:12:00 ق.ظ ]