دانلود پایان نامه:محاسبات کوآنتومی برهمکنش یونهای کبالت ، جیوه ، سرب و آلومینیوم با نانولوله های کربنی … |
2-1 مقدمه. 36
2-2 نقاط کوانتومی.. 38
2-3 محاسبه شعاع نانو لوله ها 43
2-4 پیوند یونی.. 45
فصل سوم: روش انجام کار
3-1 روش های انجام کار. 52
3-2 انرژی اتصال. 59
3-3 ممان دوقطبی.. 61
3-4 محاسبات خواص بنیادی.. 62
3-4-1 بررسی مقادیر انرژی یونش… 63
3-4-2 بررسی مقادیر الکترونخواهی.. 64
3-4-3 بررسی مقادیر پتانسیل شیمیایی.. 64
3-4-4 بررسی مقادیر سختی و نرمی.. 64
3-5( شکاف بین HOMO و LUMO.. 64
منابع و مأخذ. 90
فهرست جداول
عنوان صفحه
جدول 1-1 خواص اتمی، فیزیکی و شیمیایی کبالت… 12
جدول 1-2 خواص حرارتی و الکتریکی کبالت… 13
جدول 1-3 خواص اتمی، فیزیکی و شیمیایی جیوه 16
شکل 1-4 خواص اتمی، فیزیکی و شیمیایی سرب… 20
جدول 1-5 خواص مکانیکی و حرارتی سرب… 20
جدول 1-6 خواص اتمی، فیزیکی و شیمیایی آلومینیوم. 29
جدول 3-1 انرژی ساختارها بعد از قرار گرفتن یون های کبالت(II)، سرب(II)، جیوه(II)، آلومینیم(III)، در داخل نانو لولهها به روشDFT با توابع هیبریدی B3LYP و سری پایه LanL2DZ. 60
جدول 3-2 ممان دو قطبی ساختار ها، قبل و بعد از برهمکنش یون های کبالت(II)، سرب(II)، جیوه(II)،آلومینیم(III)، با نانولوله ها به روشDFT با توابع هیبریدی B3LYP و سری پایه LanL2DZ برحسب دبای.. 61
جدول 3-3 بررسی خواص بنیادی ساختارها 63
جدول 3-4 شکاف بین HOMO – LUMO بعد از قرار گرفتن یونها در داخل نانولوله ها به روش DFT/B3LYP و سری پایه Lanl2DZ برحسب ev. 65
فهرست اشکال
عنوان صفحه
شکل 1-1 نمایش حرکت الکترون در فضای اطراف هسته در مدل اتمی بور. 3
شکل 1-2 نمایش پراش دو شکاف… 4
شکل 1-3 خواص یون کبالت… 12
شکل 1-4 یون جیوه و خواص آن. 16
شکل 1-5 یون سرب و خواص آن. 20
شکل 1-6 یون آلومینیوم و خواص آن. 30
شکل 2-1 مکانیزم هدایت الکتریکی در یک ترکیب نیمه هادی.. 40
شکل 2-2 خاصیت فوتوالکتروشیمیایی نقاط کوانتومی تحت تابش نور الف) ایجاد جریان آندی در حضور ترکیب الکترون دهنده (D) در محلول ب)ایجاد جریان کاتدی در حضور ترکیب الکترون گیرنده (A) در محلول. 43
شکل 2-3 روابط میان اضلاع یک مثلث… 46
شکل 2-4 ارتباط طول بردار کایرال با طول بردارهای m و n.. 46
شکل 2-5 انرژی پتانسیل و فاصله یونی.. 50
شکل3-2 ساختار بهینه شده نانولوله ها بعد از قرار گرفتن یون های کبالت(II)، سرب(II)، جیوه(II)، آلومینیم(III) در داخل آن ها به روشDFT با توابع هیبریدی B3LYP و سری پایه LanL2DZ.. 60
(1)شکل 3-3- ساختار اوربیتال های HOMO(a) و LUMO(b) و طیف DOS CNT & Co(II) 67
(2)شکل 3-4-HOMO وLUMO و طیف DOS نانولوله. 69
(3) شکل 3-5- اوربیتال های HOMO(a) و LUMO(b) وطیف DOS ساختار CNT &Pb+270
CNT )& Al+3. 71
. 73
. 74
(7)شکل 3-9 ساختارHOMO وLUMO طیف DOS نانولوله BNT & Hg+275
. 77
. 78
. 79
. 81
. 82
. 84
. 85
. 86
88
چکیده
در سال های اخیر، استفاده از نانولوله ها به عنوان نانو حامل های انتقال دارو مورد تحقیق و بررسی قرار گرفته است. در این تحقیق از نانولوله های کربنی CNT(5-5) و CNT(6-0) و BNNT(6-0) و BNNT(5-5) dopped Ga استفاده شده است.
ابتدا نانولوله ها بهوسیله نرم افزارهای Gauss View و Nanotube Modeler ترسیم شده و سپس بهوسیله نرم افزار Gaussian 09 با روش DFT و سری پایه B3LYP/LanL2DZ محاسبه گردید و سپس یونهای سرب (II) ، کبالت (II) و جیوه (II) و آلومینیم (III) در داخل نانولوله هایی قرار گرفت و به روش ذکر شده محاسبه گردید. نتایج حاصل شامل اطلاعات مربوط به انرژی اتصال، ممان دو قطبی، بارهای اتمی، خواص بنیادی (پتانسیل یونش، الکترونخواهی، پتانسیل شیمیایی و سختی و نرمی) و شکاف انرژی HOMO و LUMO محاسبه و ارزیابی شدند و نتایج زیر بدست آمد. از نظر انرژی اتصال و میزان جذب، نانولوله CNT(5,5) بیشترین برهمکنش و جذب را با یون Pb2+دارد.
از نظر ممان دو قطبی نانولوله BNNT(5,5)dopped Ga بیشترین ممان دو قطبی را با یون Al3+نشان داده است و ساختار نانولوله CNT(5-5) با یون Al3+کمترین ممان دو قطبی را دارا است.
مقادیر انرژی یونش نشان داده که ساختار Hg2+& BNNT-Ga بیشترین انرژی یونش و ساختار Hg2+& CNT(6,0) کمترین انرژی یونش و بیشترین واکنش پذیری را دارد.
مقادیر شکاف HOMO و LUMO در یونها قبل از برهمکنش با نانولوله ها زیاد و بعد از برهمکنش آن کاهش پیدا کرده است که این کاهش نشان دهنده انتقال بار و افزایش رسانایی می باشد و در بین ساختارها بعد از قرار گرفتن یون در داخل آنها، ساختار Hg2+& BNNT-Ga بیشترین شکاف و کمترین رسانایی را دارا هستند.
کلیدواژه ها: محاسبات کوآنتومی، برهمکنش یونها، نانولوله های کربنی و بور نیتریدو DFT
فصل اول
مقدمات و تعاریف اولیه
1-1 مقدمه
مدل اتمی بور كه تا پیش از پیدایش مكانیك كوانتومی،كاملترین نظریه در توصیف جهان خُرد بود، نمی توانست در مورد قواعد انتخاب اتم هیدروژن اظهار نظر درستی نماید. بر طبق چنین قواعدی كه از لحاظ تجربی مشاهده شده بودند، تنها ترازهای معینی از انرژی دیده می شوند. در واقع الكترون اتم هیدروژن، هر انرژی دلخواهی ندارد و تنها مقید به برخی انرژی های معین است. نظریه اتمی بور كه امروزه نظریه كوانتوم قدیم خوانده می شود، ریشه های در مكانیك كوانتومی نداشت و اصول خود را از مكانیك كلاسیك به وام میگرفت. با این حال، نظریه بور به وضوح، گسستگی ترازهای انرژی را در اتم هیدروژن نشان می داد. در این نظریه علاوه بر انرژی، اندازه حركت زاویهای هم كمیتی گسسته بود. حتی فضای حركت الكترون به دور دسته هم محدود به مدارهای خاص با فاصله معینی از هسته میشد. تمایز نظریه كوانتوم قدیم و مكانیك كلاسیك در گسسته بودن مقادیر كمیتهایی مثل انرژی و اندازه حركت زاویه های بود.همان طور كه در شكل 1-1 میبینید در نظریۀ بور، الكترون روی ترازهایی با انرژی و شعاع معین از هسته قرار دارد.
فرم در حال بارگذاری ...
[سه شنبه 1399-10-16] [ 11:14:00 ب.ظ ]
|